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Related materials

� Wooldridge 4e, Ch. 13.3 through heterogenity bias (just a fancy name for a type of omitted variable
bias)

� Handout #19 on two year and multi-year panel data

� Lecture on Tues 4/15

� Section on Wed 4/9 and Wed 4/16

� Question 4 on Daily Assignment #16, also see solutions posted on BSpace

� For a more advanced discussion of fixed effects you can review Wooldridge 4e, Ch. 14.1

1 The basics of panel data

We’ve now covered three types of data: cross section, pooled cross section, and panel (also called longitudi-
nal). In a panel data set we track the unit of observation over time; this could be a state, city, individual,
firm, etc.. To help you visualize these types of data we’ll consider some sample data sets below.

Table 1.

indiv year wage edu exper female

1 1990 3.10 11 2 1
2 1990 3.24 12 22 1
. . . . . .

100 1990 5.30 12 7 0

Cross sectional data is a snapshot of a bunch of (randomly selected) individuals at one point in time.
Table 1 provides an example of a cross sectional data set, because we only observe each house once and all
of the observations are from the year 1990. Since we use i to index people, firms, cities, etc., the notation
for cross sectional data is what you’ve seen before:

wagei = β0 + β1edui + β2experi + β3femalei + ui



Table 2.

house year hprice bdrms bthrms sqrft

1 2000 85,500 3 2.0 1600
2 2000 67,300 3 2.5 1400
. . . . . .

100 2000 134,000 4 2.5 2000
101 2010 243,000 4 3.0 2600
102 2010 65,000 2 1.0 1250

In contrast, pooled cross sectional data is multiple snapshots of multiple bunches of (randomly selected)
individuals (or states or firms or whatever) at many points in time. Table 2 is an example of a pooled
cross-sectional data set because we only observe each house once (102 houses) but some of the observations
are from the year 2000 while others are from the year 2010. We can use the same notation here as in cross
section, indexing each person, firm, city, etc. by i. Suppose we have two cross sectional datasets from two
different years; pooling the data means to treat them as one larger sample and control for the fact that some
observations are from a different year:

hpricei = β0 + β1bdrmsi + β2bthrmsi + β3sqrfti + δy2010i + ui

Table 3.

obs. i t murder rate pop density police

1 1 2000 9.3 2.24 440
2 1 2001 11.6 2.38 471
3 2 2000 7.6 1.61 75
4 2 2001 10.3 1.73 75
. . . . .

199 100 2000 11.1 11.1 520
200 100 2001 17.2 17.2 493

Finally, there is panel data which is more like a movie than a snapshot because it tracks particular people,
firms, cities, etc. over time. Table 3 provides an example of a panel data set because we observe each city i in
the data set at two points in time (the year 2000 and 2001). In summary, the data set has 100 cities but 200
observations. This particular panel data set is sometimes referenced as a ‘balanced panel data set’ because
we observe every single city in both the year 2000 and 2001. However, if we observed some of the cities in
the year 1999 but not all of them, then we would call it an ‘unbalanced panel data set’ (this distinction often
isn’t very important). With a panel data (balanced or unbalanced) we start indexing observations by t as
well as i to distinguish between our observations of city i at various points in time:

murdersit = β0 + β1popit + β2unempit + β3policeit + αi + δt + uit

where the αi represents city fixed effects and the δt represents year fixed effects. In a nutshell, αi can be
thought of as shorthand for a set of binary (indicator) city variables each multiplied by their respective
regression coefficients (that is, a binary variable for each city multiplied by its regression coefficient). Sim-
ilarly, δt can be thought of as shorthand for a set of binary (indicator) year variables each multiplied by
their respective regression coefficients (that is, a binary variable for each year multiplied by its regression
coefficient). We’ll consider this in more detail next.
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Fixed Effects Regression

I suspect many of you may be confused about what this αi term has to do with a dummy variable. It
certainly looks strange, given that it’s not attached to any variable! Let’s consider a subset of our example
panel data from Table 3, where the unit of observation is a city-year, and suppose we have data for 3 cities
for 3 years—so 9 total observations in our dataset.

obs i t murder rate pop density City1 City2 City3 Yr00 Yr01 Yr02

1 1 2000 9.3 2.24 1 0 0 1 0 0
2 1 2001 11.6 2.38 1 0 0 0 1 0
3 1 2002 11.8 2.42 1 0 0 0 0 1
4 2 2000 7.6 1.61 0 1 0 1 0 0
5 2 2001 10.3 1.73 0 1 0 0 1 0
6 2 2002 11.9 1.81 0 1 0 0 0 1
7 3 2000 11.1 6.00 0 0 1 1 0 0
8 3 2001 17.2 6.33 0 0 1 0 1 0
9 3 2002 20.3 6.42 0 0 1 0 0 1

Since we have multiple observations for each city, we can run the following regression:

murderit = β0 + β1popdenit + α2City2 + α3City3 + δ2Y r01 + δ3Y r02 + uit

In this regression specification City2 and City3 are each indicator variables for cities 2 and 3 in the data
set; notice I exclude an indicator variable for city 1 to avoid perfect multicollinearity. Likewise, Y r01 and
Y r02 are indicator variables for the year 2001 and the year 2002.

How do we interpret β1, α2 or δ2 here? To answer this question it is instructive to start with a different
parameter, the intercept, β0, which give us the average murder rate given zero values for all of the explanatory
variables model. Note that is City2 = 0 and City3 = 0 then by process of elimination β0 must be related
to the murder rate in City1 (the city/category excluded from the regression). But that’s not all, β0 is also
related to the murder rate in the base year 2000 because Y r01 = 0 and Y r02 = 0. Given this example, we
have the following interpretations.

� δt estimates the common change/difference (to all cities) in the murder rate in year t relative to the
year 2000, controlling for population density and city-specific time-invariant characteristics (the city
fixed effects). We call δt a year fixed effect precisely because the change is common to all cities in year
t; in other words, the ‘effect’ of year t is ‘fixed’ across all cities.

� Similarly, αi estimates the common change/difference (to all years) in the murder rate in city i relative
to city 1, controlling for population density and year-specific characteristics/shocks common to all cities
(the year fixed effects). We call αi a city fixed effect precisely because the difference is common to all
years in city i; in other words, the ‘effect’ of city i is ‘fixed’ across all years.

� β1 is the estimated effect of population density on crime, controlling for city-specific time-invariant
characteristics and year-specific shocks (the city and year fixed effects).

To see the interpretation of αi more clearly, suppose we’re only looking at observations from city 3 (i.e.
City2 = 0 and City3 = 1):

murders3t = β0 + β1popden3t + α2 · 0 + α3 · 1 + δ2Y r01 + δ3Y r02 + u3t

This simplifies to the following:

murders3t = β0 + β1popden3t + α3 + δ2Y r01 + δ3Y r02 + u3t
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This is where the αi term comes from in a fixed effect regression! For any given cross sectional unit (i),
which in this example is a city, the other terms with city dummies drop out and we only have the term with
a dummy for that city, αiCityi left. For fixed effect regressions, we simply save time by writing an αi instead
of writing out each dummy variable. You can imagine that if we had 85 cities instead of 3, writing out each
dummy variable would get super tedious.

Now suppose we only look at observations from the year 2002 (i.e. Y r01 = 0 and Y r02 = 1):

murderi2 = β0 + β1popdeni2 + α2City2 + α3City3 + δ2 · 0 + δ3 · 1 + uit

murderi2 = β0 + β1popdeni2 + α2City2 + α3City3 + δ3 + uit

We can also write the time dummy variables in shorthand as δt. Note the subscripts on these variables: for a
given city, its city dummy variable isn’t going to vary by year, and for a given year, its year dummy variable
isn’t going to vary by city. So we often write this regression as:

murderit = β0 + β1popdenit + αi + δt + uit

To be consistent with the notation in Wooldridge and elsewhere we can also write:

murderit = β0 + β1popdenit + ai + dt + uit

Because it’s more conventional in the academic literature these days, I prefer reserving Greek for parameters
(like regression coefficients which we typically estimate) and using the English alphabet to denote the outcome
and explanatory variables. But it really doesn’t matter.

Panel Regressions in STATA:

There are a few ways to implement a regression that controls for city and time effects (i.e. regression models
with fixed effects). In these examples, I use a dataset about murder rates and unemployment rates across
US states in the years 1987, 1990, and 1993.

1. m̂rdrteit = β̂0 + β̂1unemit + α2State2 + ...α50State50︸ ︷︷ ︸
Dummy for all but one state

+ δ1Y r2001 + δ2Y r2002︸ ︷︷ ︸
Dummy for all but one year

+uit

In STATA (note that when we write state 2 - state 51 STATA includes all variables appearing
between state 2 and state 51 in the ‘variable list’; be careful about ordering of your variable list
when using this code):
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reg mrdrte unem state_2 - state_51 year_2 year_3

Source | SS df MS Number of obs = 153

-------------+------------------------------ F( 53, 99) = 17.75

Model | 11622.5233 53 219.292892 Prob > F = 0.0000

Residual | 1222.81484 99 12.351665 R-squared = 0.9048

-------------+------------------------------ Adj R-squared = 0.8538

Total | 12845.3381 152 84.5088034 Root MSE = 3.5145

------------------------------------------------------------------------------

mrdrte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

unem | .2019432 .2947557 0.69 0.495 -.3829162 .7868025

state_2 | 2.182073 2.886745 0.76 0.452 -3.545855 7.910001

state_3 | .7759888 2.897709 0.27 0.789 -4.973695 6.525672

----------------------Deleted some fixed effect results to save space---------

state_51 | -5.036179 2.927538 -1.72 0.089 -10.84505 .7726923

year_2 | 1.577016 .7433858 2.12 0.036 .1019775 3.052055

year_3 | 1.681938 .6959821 2.42 0.017 .3009584 3.062917

_cons | 6.077295 3.300348 1.84 0.069 -.4713127 12.6259

------------------------------------------------------------------------------

2. m̂rdrteit = β̂1unemit + α1State1 + ...α50State50︸ ︷︷ ︸
Dummy for each state

+ δ1Y r2001 + δ2Y r2002︸ ︷︷ ︸
Dummy for all but one year

+uit

In STATA (note that the ‘noconstant’ option tells STATA to note estimate an intercept; the idea
is that if you don’t exclude a state indicator variable then you can’t estimate an intercept. Why?
Because the intercept reflects an excluded state.):

reg mrdrte unem state_1 - state_51 year_2 year_3, noconstant

Source | SS df MS Number of obs = 153

-------------+------------------------------ F( 54, 99) = 32.37

Model | 21588.0857 54 399.779365 Prob > F = 0.0000

Residual | 1222.81484 99 12.351665 R-squared = 0.9464

-------------+------------------------------ Adj R-squared = 0.9172

Total | 22810.9006 153 149.090853 Root MSE = 3.5145

------------------------------------------------------------------------------

mrdrte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

unem | .2019432 .2947557 0.69 0.495 -.3829162 .7868025

state_1 | 6.077295 3.300348 1.84 0.069 -.4713127 12.6259

state_2 | 8.259368 3.061705 2.70 0.008 2.184281 14.33445

state_3 | 6.853283 2.997107 2.29 0.024 .906374 12.80019

----------------------Deleted some fixed effect results to save space---------

state_51 | 1.041116 2.871721 0.36 0.718 -4.657002 6.739234

year_2 | 1.577016 .7433858 2.12 0.036 .1019775 3.052055

year_3 | 1.681938 .6959821 2.42 0.017 .3009584 3.062917

------------------------------------------------------------------------------
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3. m̂rdrteit = β̂0 + β̂1unemit + δ1Y r2001 + δ2Y r2002︸ ︷︷ ︸
Dummy for all but one year

+ αi︸︷︷︸
State “fixed effect”

+uit

In STATA:

xtset state

xtreg mrdrte unem year_2 year_3, fe

Fixed-effects (within) regression Number of obs = 153

Group variable: id Number of groups = 51

R-sq: within = 0.0676 Obs per group: min = 3

between = 0.1015 avg = 3.0

overall = 0.0314 max = 3

F(3,99) = 2.39

corr(u_i, Xb) = 0.0951 Prob > F = 0.0731

------------------------------------------------------------------------------

mrdrte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

unem | .2019432 .2947557 0.69 0.495 -.3829162 .7868025

year_2 | 1.577016 .7433858 2.12 0.036 .1019775 3.052055

year_3 | 1.681938 .6959821 2.42 0.017 .3009584 3.062917

_cons | 5.778023 1.911012 3.02 0.003 1.986161 9.569885

-------------+----------------------------------------------------------------

sigma_u | 8.6877605

sigma_e | 3.5144936

rho | .85936665 (fraction of variance due to u_i)

------------------------------------------------------------------------------

F test that all u_i=0: F(50, 99) = 17.33 Prob > F = 0.0000

Notice how the estimated coefficient for unemployment did not change between the three re-
gressions above! This is because we control for the same state and time effects in all regressions,
just in different ways.
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